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Abstract—Of the three main component types needed in
power converters—switches, capacitors and inductors—the most
difficult to integrate on a semiconductor chip or in a planar
package is the inductors. This difficulty arises partly from
process compatibility challenges with magnetic materials, and
is exacerbated by the fact that, because most types of electronics
don’t need inductors, there has been relatively little development
effort. But a more fundamental challenge is the way magnetics
performance scales with size. Capacitors and semiconductor
devices can be made from thousands of small cells connected
in parallel, but that approach would severely undercut the
performance of magnetic components.

Scaling relationships for magnetics are explored to demon-
strate the inherent difficulty of small size and low profile magnet-
ics. Cases considered include those with winding designs limited
by skin and proximity effect and those constrained by efficiency
and thermal dissipation. Small-scale magnetic components are
typically limited by efficiency rather than heat dissipation. With
efficiency constrained, and considering high frequency winding
loss effects, it is shown that power density typically scales as the
linear dimension scaling factor to the fifth power.

I. INTRODUCTION

Over the past half century, there has been astounding
progress in miniaturization of electronics, primarily through
increasing levels of integration on Si chips. For information
handling, this miniaturization has come partly through reduc-
ing the amount of energy involved per bit. Miniaturization of
power electronics is inherently more difficult, and the slower
progress in power electronics has made power conversion an
increasingly important bottleneck. A key part of the challenge
for miniaturization and integration of power electronics is the
need for magnetic components—inductors and transformers—
which are neither required nor available in conventional infor-
mation processing integrated circuits.

There are many reasons that it is difficult to integrate power
magnetics, including the fact that the preferred materials and
processes are different or even incompatible [1], [2]. Without
discounting the importance of those issues, we explore here an
even more fundamental issue that makes small, efficient power
inductors challenging, regardless of the technology used: the
way magnetics performance scales with physical size. We
show that, in contrast to capacitors and semiconductors which
scale down well, magnetic components’ performance is best at
larger sizes. This drives the need for custom magnetics design
for particular applications, fully utilizing the available space:
modular approaches combining smaller components or cells,
as can be used with semiconductors and capacitors, could

severely degrade magnetics performance. Nevertheless, it is
possible to obtain good performance even in small packages, if
the disadvantages of small sizes are understood and mitigation
strategies are applied.

A key strategy towards miniaturization of power passives
is the use of high frequencies, and the scaling with respect
to frequency has been examined in, for example, [2]–[6]. Our
goal in this paper is to narrow the focus to the scaling of
performance with physical size, once a frequency has been
selected. When miniaturization is desired, high frequencies
will typically be used. Thus, high-frequency winding loss
effects must be considered. Nonetheless, we start with a simple
analysis neglecting high-frequency winding loss effects in
Section II followed by an analysis of situations subject to these
effects in Section III. We limit the discussion to magnetic-
core components, and refer the reader to [3] for an analysis
of scaling of air-core components. The analysis is similar that
that in [6], but a different set of scenarios is examined.

Scaling laws are widely used in fluid dynamics, where
dimensionless parameters such as Reynolds number are used
to systematically account for the scaling and enable scale-
model experiments that accurately reflect behavior of a larger
system through “similitude.” In biology, the concept is termed
“allometry,” and is used to explain otherwise surprising phe-
nomena, such as the ability of ants to carry many times their
body weight. Our title derives from two well known [7] and
excellent [8] popular books on allometry in biology.

II. LOW-FREQUENCY MAGNETIC SCALING

A. Constant flux and current density

A well known basic reference case for magnetics scaling
neglects high-frequency winding loss effects. It is assumed that
winding loss limits the spatial average of rms current density
in the winding window to J0, averaging over the copper area
and the space between turns, such that J0 reflects the impact
of packing factor for the wire. It is also assumed that the
flux density is limited to a value B0, based either on losses
or on saturation. To calculate the scaling of the VA handled
by a transfomer or inductor subject to these limits, we note
that voltage in a winding is proportional to the product of the
number of turns in that winding N , the frequency f , and the
flux linked by the winding, Φ. The flux is given by Φ = B0Ac
where Ac is the cross-sectional area of the core. Similarly the



current is given by I = J0Aw/N , where Aw is the area of
the winding in question. Thus, VA is given by

V A = V ·I = (NfB0Ac)

(
J0Aw
N

)
= f(B0J0)(AcAw) (1)

The number of turns drops out, and the VA or power handling
is proportional to the area product AcAw. If we scale all
linear dimensions by a factor ε, the areas scale as ε2 and the
area product as ε4, while the volume scales as ε3. Thus, the
power density scales as ε4/ε3 = ε. Although there are many
limitations to this applicability of this analysis, it shows that
there is a fundamental advantage to larger-scale magnetics.

Note that (1) appears to indicate that power handling is
proportional to frequency. However, that is assuming that the
allowable flux density, B0, is independent of frequency, which
would only be true if it were limited only by saturation. In
most practical cases, it is also limited by core loss, which
depends on frequency. The product fB0(f) where B0(f)
is the loss-limited allowable flux density as a function of
frequency, is often described as the performance factor of a
magnetic material, and can be useful in choosing a frequency
of operation [5]. For our purposes, we consider frequency and
performance factor to be fixed constants.

For the simple case described by (1), we can also easily
see that a larger size component not only has higher power
density, but also has higher efficiency, which we assess through
the loss fraction, Ploss/V A. Given the assumption of constant
loss density, the loss is proportional to ε3, so combining that
with (1) we have

Ploss
V A

∝ ε3

ε4
= ε−1. (2)

The loss fraction is simply inversely proportional to the linear
scaling factor.

From this analysis we can, for example, see a fundamental
disadvantage of making a 100 W transformer by assembling
100 smaller transformers, handling 1 W each. With the same
current and flux densities, each small transformer would
need an area product 100 times smaller than the original,
so the linear dimensions could be scaled down by a factor
of 1001/4, or 3.16. This means the volume of each small
transformer would be 1003/4 times smaller. One hundred of
them would occupy 100 · 100−3/4 = 1001/4, or 3.16, times
more volume than the single-transformer solution, even in the
ideal case. In practice, practical issues such as space devoted to
terminations and insulation would make the 100-transformer
array even worse. This is in sharp contrast to semiconductors
and capacitors where arrays of small units work well with no
theoretical degradation in power density. Note that the 100-
transformer array, in addition to occupying three times the
volume, also has three times higher loss.

B. Temperature rise limited scaling

Although the simple analysis of the base case is useful in
explaining the fundamental advantage of larger scale mag-
netics, the allowable loss density in a very small component

is much higher than the allowable loss density in very large
component. Thus, we also consider a more realistic constraint
of a maximum heat flow per unit surface area.

We now need to consider the scaling of loss with current
density and flux density. The winding loss density is simply
J2ρ where ρ is the average resistivity accounting for packing
factor and J is the spatial average of rms current density as
before.

For core loss, the Steinmetz equation can be used. The
commonly used extension of Steinmetz’s original equation
includes a frequency term, approximating losses as being pro-
portional to fα, but because we are not considering variation
with frequency, we revert to the original form of the equation
[9], Pv = kB̂β , where Pv is the loss per unit volume, B̂ is the
peak amplitude of the flux density, and k and β are empirical
parameters that depend on frequency.

With loss per unit area fixed, the analysis in the Appendix
shows that the VA capability scales as

V A ∝ ε3.5−1/β . (3)

Typical values of β are in the range of 2 to 3, resulting in
an exponent in (3) between 3 and 3.17, with a typical value
of 3.1 for a typical value of β = 2.5. Thus, we see that the
power handling per unit volume is almost constant as the size
is changed, still decreasing for small sizes, but not as much
as with the constant loss density assumption. However, the
efficiency now decreases faster than before as size gets small:
The loss fraction scales as

Ploss
V A

=
ε2

ε3.5−1/β
= ε−1.5+1/β . (4)

The exponent ranges from -1 to -1.17 for β between 2 and 3.

C. Efficiency limited scaling

In both the base case and the temperature rise limited
scaling, efficiency decreases at small sizes. Thus, the low effi-
ciency, rather than the temperature rise, becomes the limiting
factor for small components. With constant efficiency (i.e.,
constant loss fraction), the analysis in the Appendix shows
that VA capability scales as

V A ∝ ε
β

β−2+2+ 2
β−2+2 ∝ ε3+

2β
β−2 . (5)

For a typical value of β = 2.5, the exponent is 13, indicating
that, with efficiency fixed, the VA capability changes very
rapidly with linear dimensions. For a very small size, the VA
needs to be extremely small to keep the efficiency constant. We
can also state this in terms of volume—the VA varies with the
13/3 = 4.33 power of volume, such that a factor-of-two change
in volume provides a factor-of-20 change in power capability.
At higher values of β, the exponent in (5) decreases a bit,
to 9 at β = 3. At low values of β, the exponent increases
rapidly, and approaches ∞ as β approaches 2. That means
that the VA varies very rapidly with size, or equivalently, that
the efficiency is determined only by size, independent of the
VA, in the limit of β = 2.



The fact that efficiency is independent of VA in the limit of
β = 2 can be understood from the fact that in a linear system,
losses are proportional to the square of the drive level, as is the
case with winding loss. In the case that core loss also behaves
linearly, the full system is linear and can operate with constant
efficiency as VA is scaled up and down, assuming voltage
and current are scaled together, or that the number of turns is
adjusted accordingly.

III. SCALING WITH HIGH-FREQUENCY WINDING LOSS

To analyze the scaling of high-frequency magnetic compo-
nents we must consider the impact of high-frequency winding
loss, including skin effect and proximity effect losses. In
windings with significant proximity-effect losses, or potential
for significant proximity-effect losses, good design practice
requires optimization [10], [11], so we assume that the winding
design has been optimized in both the original design and
the scaled design. However, the appropriate optimization may
involve different constraints for different situations [5], [12]–
[14], so we consider several scenarios. The simplest scenario
to consider is one in which a strategy such as litz wire
successfully reduces the ac resistance to be approximately
equal to the dc resistance; in that case the scaling is identical
to that in Section II, and the analysis there applies.

Also straightforward to consider is a scenario with a single-
layer winding, thicker than a skin depth, such that current
flows in a layer on the surface of the winding, one skin
depth deep. The area of current flow is A′w = bδ where b
is the breadth of the winding and δ is the skin depth, and is
proportional to ε rather than ε2, because only b scales with ε.
Thus, the scaling of NI with respect to the current density in
that region, J , and with respect to ε becomes

NI ∝ Jε, (6)

and the winding resistance is independent of ε. Winding loss
scaling can be written as Pw ∝ N2I2 or

Pw ∝ ε2J2. (7)

In the case of a multilayer winding, using layers that are
thin compared to a skin depth to reduce proximity effect losses,
constraining the number of layers to a value p and using the
optimum layer thickness for minimum ac resistance results in
loss that is reduced by a factor 1/

√
p compared to the loss

with a single-layer winding [13]. Thus, the scaling behavior
in (6) and (7) is identical, even though the loss is smaller.

Another case to consider is using multiple thin layers or
fine strands, with a constraint on the minimum strand diameter
or layer thickness, and with the number of layers or strands
chosen for minimum ac resistance. As shown in [13], this
results in an improvement in ac resistance relative to a single-
layer design by a factor 2t/(3δ) where t is the layer thickness
or, for litz strands, the effective layer thickness t = 0.584d,
where d is the strand diameter. If t is considered to be
a technological constraint, independent of the dimensional
scaling factor ε, the result is the same scaling as in (6) and
(7).

The final scenario that one might want to consider is a
fixed number of strands of wire, including the case of using
simple magnet wire, i.e., the number of strands set to one.
This is unlikely to be the constraint of interest in practical
high-frequency designs, so we do not fully analyze it, but only
note that the result is ac resistance proportional to ε1/3, rather
than independent of ε as in the other cases considered here.

We proceed to analyze the scaling of VA capability with
respect to size, based on (6) and (7), with the understanding
that the results apply to a single-layer winding, thicker than
a skin depth; to an optimized multilayer winding with a
constrained number of layers; or to an optimized multilayer
winding with a constrained layer thickness or strand diameter.
Because high-frequency effects make the current distribution
in the winding non-uniform, the case of constant loss density
is no longer possible, and so we analyze only the constraints
of constant surface heat flux and constant efficiency.

A. Temperature rise limited scaling

The scaling of high-frequency magnetic components is
considered with the maximum heat flow per unit surface area
constrained. The derivation is similar to that in Section II-B,
but, based on (7) the winding loss now scales with ε2.

Equating the winding loss to the allowed winding loss
Pallowed,w = k`,wε

2 results in

ε2J2ρ = k`,wε
2. (8)

Thus J is independent of the scaling factor ε, and NI ∝ ε.
The core loss analysis is the same as in Appendix A, and

(14) still applies: NΦ ∝ ε2−1/β . We find that the VA capability
scales as

V A ∝ ε3−1/β . (9)

For typical values of β between 2 and 3 the exponent in (9)
is between 2.5 and 2.67.

The resulting loss fraction is

Ploss
V A

=
ε2

ε3−1/β
= ε−1+1/β (10)

Based on typical values of β the exponent in (10) is between
-0.5 and -0.67.

Assuming a maximum heat flow constraint, the power han-
dling per unit volume of a high-frequency magnetic component
actually improves as it is reduced in size. Despite the increase
power handling density, the loss fraction associated with a
maximum heat flux constraint indicates a serious degradation
in efficiency, resulting in the need to examine efficiency
limited scaling for the high-frequency case.

B. Efficiency limited scaling

Modifying the analysis in the Appendix based on the high
frequency winding area A′w scaling with ε and the effective
winding volume V′w scaling with ε2, the VA capability be-
comes

V A ∝ ε
β−1
β−2+1+ 1

β−2+2 ∝ ε3+
β

β−2 . (11)

This gives an exponent ranging from 6 for β = 3 to ∞
for β = 2. The exponent is smaller compared to that for



TABLE I
SUMMARY OF SCALING FACTORS. GENERAL RESULTS ARE FOLLOWED BY

RESULTS FOR A TYPICAL VALUE OF THE STEINMETZ EQUATION
EXPONENT β = 2.5

Constraint VA VA/Volume Ploss/VA

Low Frequency

Loss density ε4 ε ε−1

Heat flux ε3.5−1/β ε0.5−1/β ε−1.5+1/β

≈ ε3.1 ≈ ε0.1 ≈ ε−1.1

Efficiency ε
3+ 2β

β−2 ε
2β

β−2 Constant

≈ ε13 ≈ ε10

High Frequency

Heat flux ε3−1/β ε−1/β ε−1+1/β

≈ ε2.6 ≈ ε−0.4 ≈ ε−0.6

Efficiency ε
3+ β

β−2 ε
β

β−2 Constant

≈ ε8 ≈ ε5

High Frequency Air-Core [3]

Heat flux ε3 Constant ε−1

low-frequency scaling in (5) because, for large components,
the available winding space is utilized less efficiently; A′w
becomes small compared to Aw. However, as was discussed
in Section II-C, the VA capability still scales very rapidly as
the linear dimensions are scaled for fixed efficiency, and as β
approaches 2, the efficiency becomes independent of the VA.

IV. CONCLUSION

The results are summarized in Table I, including results
from [3] for air-core inductors. Because an air-core inductor’s
loss fraction increases as size is reduced, it is not possible
to scale them with constant efficiency. The table includes the
general results as a function of the Steinmetz exponent, β, as
well as example results for a typical β = 2.5. In most cases
both efficiency and power density get worse at small scales.

As components get small, the efficiency constraint nor-
mally becomes dominant. The possible power density then
drops precipitously with size, severely limiting the potential
for miniaturization. The result is that it is advantageous to
maximize the volume available for magnetic components, and
to select circuits that use few magnetic components, each
handling high VA, rather than many small components each
handling small VA.

APPENDIX
DERIVATION OF SCALING FACTORS

A. For Section II-B

Equating winding loss to the allowed loss Pallowed,w =
k`,wε

2. results in VwJ
2ρ = k`,wε

2, where Vw is the volume
of the winding, which leads to

J ∝ ε−0.5. (12)

Because NI ∝ Jε2,
NI ∝ ε1.5. (13)

A similar analysis of core loss results in B̂ ∝ ε−1/β and thus

NΦ ∝ ε2−1/β . (14)

Combining (13) and (14), we find the VA capability scales as

V A ∝ ε3.5−1/β . (15)

B. For Section II-C
Assuming winding losses proportional to VA results in

VwJ
2ρ̄ ∝ fB̂JAwAc (16)
J

B̂
∝ ε. (17)

Similarly, assuming core loss proportional to VA results in

VckB̂
β ∝ fB̂JAwAc, (18)
J

B̂β−1
∝ 1

ε
. (19)

Solving (17) and (19) simultaneously, we get B̂ ∝ ε2/(β−2)
and J ∝ εβ/(β−2). As before, NI ∝ Jε2 and NΦ ∝ B̂ε2,
which leads to

V A ∝ ε
β

β−2+2+ 2
β−2+2 ∝ ε3+

2β
β−2 . (20)
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